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 
Abstract— In this paper we propose a new technique for optical 

wavelength demultiplexing (DEMUX) relaying on two phenomena: 

Goos-Haenchen (GH) shift and continuous refraction at a graded-

index medium interface. IN the first case, two light beams are totally 

reflected at a plane interface separating two dielectric lossless media 

.The reflected beams suffer different lateral shifts (GH shifts)which 

depend on the wavelength; thus accomplishing the required spatial 

beam separation. In the second case, the two light beams have 

different “turning points” inside the graded index medium; hence 

the “back-refracted” beams are spatially separated .In this paper, we 

optimized the conditions of operation of such demultiplexing 

technique. This makes possible the integration of such technique in 

“planer integrated–optics” structures which can be used reliably in 

optical fiber communication networks. 

 
Keywords— Wavelength Demultiplexing  , Beam Propagation 
Method , Graded- Index Interface. 
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I. INTRODUCTION 
Wavelength division multiplexing (WDM) is the optical 

equivalent of Frequency Division Multiplexing (FDM) to 

electrical signaling.WDM transmits two or more different 

light wavelengths in the same optical fiber. Though the 

process of multiplexing is reasonably straight forward, 

demultiplexing is much more difficult in an optical system. 

These are many methods [1-4] to demultiplex optical signals: 

prisms, diffraction grating, arrayed waveguide grating 

(AWG), thin-film filters and interferometers. These methods 

vary in their relative complexities, reliability and 

performance. This is why optical networks components 

manufactures try to find out simpler and more reliable 

techniques for demultiplexing, especially dedicated to 

integrated–optics architecture. Because that architecture can 

be integrated very easily in fiber optics networks (the dream 

of all optical networking engineers).Consequently, we 

propose in this paper a novel technique which can be realized 

by two different methods as shown in Fig.  1 . 
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                                (b) 

 

Fig. 1 Optical demultiplexing at a dielectric interface  

a) Goos-Haenchen shift     b) Continuous refraction 
 

In the first method: the GH shift depends on the wavelength and 

hence when two light beams with different wavelengths are incident 

at the critical angle on a dielectric interface separating two lossless 

dielectric media with refractive indices n1 and n2 (n1˃ n2),the 

reflected and the transmitted beams also suffer from two different 

lateral shifts.Thus the separation of these wavelengths is achieved, 

and we are interested to optimize the separation angle ΔƟ or ΔƟT of 

the transmitted beam by varying the angle of incidence around the 

critical value (sin-1(n2/n1)). 

In the second method: the rarer dielectric medium n2 is made 

graded-index (i.e.n2(x)).Accordingly, the two light beams incident 

from the medium n1, vary their penetration depth and hence reach 

two different “turning points” in the graded-index medium n2(x). 

We tried different graded “profiles” to maximize the separation 

angle ΔƟ. 

 

 

II. THE BEAM PROPAGATION METHOD BPM: 
 

To assess and evaluate the performance of the proposed novel 

demultiplexer we have to solve a major problem: how to study the 

propagation of almost “realistic” light beams? That is to say: optical 

beams with finite “spatial extension” like gaussian beams. 

Obviously, the interest in gaussian beams relies on many facts; 

because the laser beams radiated from laser sources are well 

approximated by gaussian beams. Also the fundamental mode in a 

single – mode fiber is well approximated by a gaussian field 

distribution.One of the most powerful methods used to study the 

propagation of light beams in complex media is the BPM [5-8]. 

 

The literature on the BPM is so extensive [8-10], and hence, we 

shall not expose the details of that method; but we shall give a brief 

exposition of that method. 

Referring to fig. 2 , the unity amplitude y-polarized Gaussian beam 

at z = 0 in the interface coordinate system (x, z) can be written as 

[11]: 

 

   2
0 1 0( ,0) exp ( )cos / .exp siny d dx X X w jk x x              

(1) 

 
 

Where, the time dependence    is suppressed. The BPM, first 

introduced by Fleck et.al. [12], relies on the expansion of  Ey(x, 0)as 

a continuous spectrum of plane waves (i.e. a “spatial” Fourier 

transform). Each component of the spectrum is made to propagate a 

small distance Δz in a “homogeneous” (reference) medium having a 

refractive index n0. The reference medium is usually chosen 

arbitrarily in the range   n2≤n0 ≤n1. 

The propagation process is accomplished in the Fourier-domain by a 

single multiplication of the spatial spectrum with a phase function 

(propagator) which will be explained later on. After the propagation 

over Δz is performed, we Fourier-invert the “propagated spectrum” 

to recover the “field” after a small distance Δz. Finally, to take into 

account for the deviation δn(x) of the actual refractive index 

distribution n(x) from the value n0, we correct the “phase” of the 

“propagated” field (after a small distance Δz) through a simple 

multiplication by   
0 ( ) .j k n x ze  

 , to get finally the 

field after a propagation distance Δz. 

 
This procedure is summarized as follows: 

1- Calculate ƒ [Ey(x, 0)], where “ƒ” stands for the 

“spatial Fourier transform operation”. 

2- Multiply ƒ [Ey(x, 0)] by a propagator operator P. 
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3- Calculate“ƒ-1“ of the propagated spectrum obtained in 

step2. 

4- Apply “Q” on the field obtained in step 3, where 

Qrepresents an operator which takes into account for 

the deviation of the actual refractive distribution n(x) 

from the “reference value n0”. 

Hence, the procedure described by the previous four steps 

allows the calculation of Ey(x,Δz) once Ey(x,0) is known. 

This means that this procedure can be repeated to 

calculate the total field at certain distance Z once the 

initial field at z = 0 is known. The details of the procedure 

are outlined in the appendix.  

 

Fig.  2   Gaussian beam incident at an angle (  – θ0) where θ0 is the 

beam tilt angle. 
 
 

III. RESULTS FOR PLANE INTERFACE: 
 
The situation depicted in Fig. 1(a) is considered. Two 

Gaussian beams at wavelength 1.55 µm and 1.33 µm are 

incident at the angle (  where Ɵ0 is the tilt angle of the 

beams as shown in figure (3). The angle of incidence is varied 

in close vicinity around the critical value sin-1(n2/n1) where 

we take n1=1.5 and n2=1. The peaks of the transmitted beams 

at the end of the propagation distance z0 are separated by a 

distance ΔX0 due to the wavelength dependence of the G H 

shift, and hence its impact on the transmitted beams can be 

explained with reference to Fig.  3 as follows: 

The spectral components (i.e the plane wave components)of 

the Gaussian beams at λ1 and λ2 have two parts: below the 

critical angle Ɵc=sin-1(n2/n1) and above Ɵc. The components 

below Ɵc will constitute the transmitted beams at λ1and λ2, 

while those at and above Ɵcwill constitute the reflected 

beams. We varied the angle of incidence ( around Ɵc 

and determined ΔX0 after z0=3000 µm (the total propagation 

distance). 

 

 
Fig. 3 Two Gaussian beams at λ1andλ2 incident at angles   

around the critical value on the interface x=0 

Fig.  4 Shows that the peak of ΔX0=34 µm occurs at a tilt 

angle Ɵ0=47.95o, hence the optimal transverse separation 

distance ΔX0 is –as expected–close to Ɵ0=48.19o (which 

corresponding to Ɵc=sin-1(1/1.5)=41.81o). This agrees with 

the explanation given above. 

Fig.  4 Transverse separation of the transmitted beams as function of 
beam tilt angle Ɵ0 
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IV. RESULTS FOR GRADED – INDEX INTERFACE: 
 

The situation depicted in fig. 1(b) is considered where n2(x) is 

a graded–index distribution as shown in fig. 5. The beam 

width W is taken to be equal to 10 µm and xd = 20W (c.f. fig. 

(1(b) and fig. 2).  

The exponential profile n2(x) is taken as: 

 
(0.0028 x ) 

2 1n (x)= n  e           -2000 m x <0         (2)   

Where   n1 = 1.5 and  x   is in µm and extends in the 

 –ve direction. 

The linear profile is taken as: 

2 1n (x)=mx+n                     -1500 m x <0                       (3) 
 

Where: 
 

        is the straight line slope (n1 = 1.5, n2 = 1) 

 

And finally, the quadratic profile is taken as: 

 
2

2 1n (x)=n [1-( x) ]                        -2000 m x <0       (4)  
 

Where: 

X is in µm and α= 385*10-6 to guarantee that n2(x) varies 

from 1.5 at the interface x = 0 to 1 at x = -1500µm (the half 

width of the computational window). 

Fig. 6 shows a sample of the BPM calculations corresponding 

to the linear profile. The figure reveals the “continuous 

refraction” of the two beams as they propagate in the graded 

index medium until the “turning points” are reached, where 

the two beams propagate back to the homogeneous medium 

n1 where they are clearly separated. 

 

 

 

 

 

Fig. 5  Planar interface between homogeneous and graded – 

index media 

 

 

                Fig. 6  Wave propagation of both wavelengths 
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As we mentioned before, we searched for the optimum angle 

of incidence which results in a maximum transverse 

separation distance Δx0. Fig.  7 shows that there is always an 

optimum angle of incidence which results in maximum 

transverse separation distance Δx0as expected earlier. 

 

 

 
                                         (a) 

 

 
                                             (b) 

 

                                                        (c) 
 
 Fig. 7  Variation of the transverse separation distance as 

function of the incidence angle for the (a) linear, (b) quadratic 

and exponential (c) profiles. 

 

 

V. CONCLUSION 

 
In this paper we demonstrated theoretically the feasibility of a 

novel technique for optical wavelength Division Multiplexing 

(WDM).To our knowledge, we think that this is the simplest 

technique in the existing literature on WDM. The technique 

can be realized reliably in planar integrated optics structures, 

and this will be more preponderant than many other existing 

techniques in such structures, since the integration of our 

proposed method in semiconductor laser diode technologies 

and high speed optical detectors is straight forward. The 

realization of the proposed method can be extended to low 

loss active substrates and this can open the door to many 

devices extremely useful in optical switching, optical 

computing and optical memories.   
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 Appendix 
 

The problem under consideration is invariant with respect to 

the y-coordinate , consequently   
2

2 0
y




 and the 

scalar wave equation for Ey  takes the form : 
 

2 2
2 2

02 2 ( ) 0yk n x E
x z

 
 

 
   

            
(A1) 

 
Where n(x)  is the refractive index distribution which is 

function of the transverse coordinate: x . Equation (A1) can 

be written as: 

2
2 2 2

02 [ ( )]y
t y

E
k n x E

z



           (A2) 

 
 
 

Where 
2

t is the transverse laplacian

2

2x

 . The 

coefficient of Ey in the right hand member of (A2) is an 

operator which depends only on the transverse coordinate “x” 

(transverse to the direction of propagation “z” ) and hence, a 

formal operator solution of (A2) for the forward propagation 

field at z = Δz in terms of its value at z = 0 is : 

 

 ( , ) exp( ) . ( , 0)y yE x z i z R E x           (A3) 

 

Where a time dependence exp(-iωt) is assumed and Ris the 

operator : 

1
2 2 2 2

0[ ( ) ]tR k n x                (A4) 

 

If n(x) is denoted shortly by n , then the operator  R  can be 

written as: 

1 2
2 2 2 2

10 0
2 2 2 2

0 0

[ ]
[( ) ]

t
t

t

R k n k n
k n k n

 
      
          

(A5) 

 

If n in the dominator of the first term in the right – hand 

member of (A5) is replaced by a certain reference value 

n0where 2 0 1n n n  then the last equation can be 

written as: 

1 2
2 2 2 2

10
02 2 2

[ ] [( ) 1]
[( ) ]

t
t

t

nk n k k n
k k

 
       
          

(A6) 

 

Where k=k0n0 .the approximation in (A6) is valid if the 

maximum deviation Δnmax(x)  of n(x) from the reference 

value n0 satisfies the following criterion: 

 

2
m a x m a x

0
( ) s i n 1zn 
 

              
(A7) 

 

Where θmaxis the angle between the direction of the highest 

significant plane wave component in the spatial spectrum of 

the total propagation field and z-axis. 

 

If Ey(x,z)  is written as: 

( , ) ( , ) . e x p ( )y yE x z e x z ik z           (A8)                                 

 

Then, apart from a constant phase factor exp(ikΔz) , direct 

substitution from (A8) into (A3) gives: 

0( , ) {exp[ ( )]}. ( ,0)y ye x z i z S k n e x   
          

(A9) 

 

Where n = n(x) – n0 and ey(x, 0) is the initial field 

distribution at z = 0. The operator S is defined as: 

2

12 2 2[( ) ]
t

t

S
k k


  

                     (A10)                                                       

 

The exponent in the right –hand member of (A9) is in fact the 

product of two operators:           

0[ex p ( )].[ex p ( )]i zS i zk n                  (A11)                                     
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These operators do not commute; hence an approximation is 

indispensable to evaluate the right- hand side of (A9). It can 

be shown that to second order in Δz, equation (A9) can be 

written in a symmetric split- operator form as: 
3( , ) { . . }. ( , 0) ( )y ye x z Q e x z                     (A12)  

 

Where Ο (Δz) 3is a negligible term of the order of (Δz) 3and 

 and Q are the two operators: 

e x p [ ( 2 ) ]i z S                                 (A13) 

                                                                          
And: 0e x p ( )Q i z k n                         (A14)                                                                

the operation  {P}.ey(x,0)  represents the propagation of the 

initial field ey(x,0) for a distance equal to half the step size 

Δz/2 in a homogeneous medium having a constant refractive 

index n0, i.e . It is equivalent to solving the Helmholtz wave 

equation: 

2 2
2

2 2 0yk E
x z

 
 

 
   

 
             (A15)                                             

With Ey(x,0) as an initial  condition at z = 0.Therefore  

advancing Ey(x,0) by repeated application of (A12) allows us 

to obtain the total propagating field Ey(x,0) at any distance  z  

once the initial field is known. The operation {P}.ey(x,0)  is 

easily performed in Fourier space because the spatial Fourier 

transform of  {P}.ey(x,0)   can be written as: 

Ƒ{P.ey(x,0)= 2 2 2 1/2( ,0).exp{( /2). /[( ) ]}x x xk i z k k k k        (A16)                 

Where  ( ,0)xk is the spatial Fourier transform of the 

initial field ey(x, 0), i.e: 

( , 0 ) ( , 0 ). exp( )x y xk e x ik x dx




         (A17)                                          

 

 Thus , advancing the initial field for a distance equal to half 

of the propagation step Δz/2  by performing the first 

operation   {P}.ey(x,0) in fourier space (via (A16)), then 

returning back to the ordinary (x,z) plane by fourier 

inversion.to take into account the deviation of the actual 

refractive index distribution n(x) from the reference value  n0  

we multiply the propagated field by the correcting operator  

Q defined in (A14).then, performing again the 

propagation process over the other half  Δz/2   of the 

propagation step. Repeated application of these processes 

allows us to calculate the total propagation field at any 

distance z. the Fourier transform is calculated numerically 

from the sampled field values at “N” discrete points xm   

where m = 1 , 2 ,....N, i.e. a Discrete Fourier transform (DFT) 

which is calculated by the Fast Fourier Transform algorithm 

(FFT). According , the discretized  version of (A17) is written 

as: 

/ 2

( /2) 1

( ,0) ( ,0).exp( )
N

xm y xm
j N

k e j x ik j x
 

    
       

(A18)                            

Where the spacing Δx between the samples of the field values 

is calculated from: 

Δx = L / N                                                                          (A19) 

                                                                                                     

“L” being the length of the computational region along the x-

axis .the variable of the DFT (the transverse wavenumber) 

Kxm is given by: 

2 /xmk m L
                                                   (A20)                                                                                             

From (A19) and (A20) , we can write (A18) as: 

 
/ 2

( / 2) 1
( ,0) ( ,0).exp( 2 / )

N

xm y
j N

k e j x i mj N
 

            (A21)                                 

 
The propagation process between z = 0and z =Δz can be 

summarized as follows: 

1- Calculate the initial spectrum ( ,0)xmk  from field 

values ( ,0)ye j x at N discrete points using the 

FFT algorithm. 

2- Propagating the initial spectrum over a half step Δz/2 in 

the Fourier domain using (A16). 
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3- Fourier inverting the propagated spectrum using the 

inverse FFT algorithm to recover the uncorrected field 

after a half step. 

4- Making the phase correction by multiplying the 

uncorrected field with the operator Q . 

5- Repeating the propagation process over the half of the 

propagation step as described in the first two steps to 

obtain finally the field at z = Δz. 

 

The previous scheme is repeated until we reach any desired 

propagation distance Ztot. A crucial question regarding the 

spatial sampling interval Δx: how to choose it? It is known that 

as the sampling interval Δx decreases, the resolution of the 

spatial Fourier spectrum is enhanced. This means that higher 

spatial frequencies in the spectrum can be “viewed”, i.e. the 

“fine details” of the field are enhanced. The spectrum of the 

incident field is centered around kxi = sin θi, and its maximum 

significant width is  4cos /xi ik W   and hence the 

maximum deviation from kxiis 2 cos /i W . 

 

From (A20) the maximum value of the transverse 

wavenumber Kxmax in the DFT corresponds to m = N/2, from 

(A19) we have: 

 max /xk x 
                                           (A22)                                                                                                           

Taking into account for the maximum deviation of Kx around 

Kxi, an acceptable for the maximum value of the transverse 

wavenumber is: max (2cos / )x xi ik k W  . 

From (A22), we deduce: 

( / ) (2cos / )xi ix k W   
            (A23)                                                                                

This means that the sampling interval Δx should not exceed 

the upper limit /[ (2cos / )]xi ik W  otherwise 

the high spatial frequencies in the spectrum 

Would not be “viewed”, i.e. the “fine details” of the field 

would be lost. Thus an acceptable upper limit on the sampling 

interval Δx is: 

max /[ (2cos / )]xi ix k W                  (A24)                                                            

Thus the actual sampling interval Δx must be less than  

Δxmax, for example 0.5 to 0.25 that value.  

Finally, it is worthy to point out that the propagating field 

which reaches the boundary of the computational window 

whose width is “L”, will appear as a fictitious field reflected 

from the boundary of that window and causes aliasing. To 

prevent this numerical problem, an “absorber” is put near the 

edges of the computational window. A wide variety of 

absorbers exist and are extensively used. We used a 

“Hanning” truncation function as an absorber, which is 

defined as: 

 

( ) 0.5{1 cos[2 ( ) / ]}dA x x x L   ,        

0 x L                                                           (A25) 
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